ESPHome 2025.5.0
Loading...
Searching...
No Matches
helpers.cpp
Go to the documentation of this file.
2
4#include "esphome/core/hal.h"
5#include "esphome/core/log.h"
6
7#include <algorithm>
8#include <cctype>
9#include <cmath>
10#include <cstdarg>
11#include <cstdio>
12#include <cstring>
13#include <strings.h>
14
15#ifdef USE_HOST
16#ifndef _WIN32
17#include <net/if.h>
18#include <netinet/in.h>
19#include <sys/ioctl.h>
20#endif
21#include <unistd.h>
22#endif
23#if defined(USE_ESP8266)
24#include <osapi.h>
25#include <user_interface.h>
26// for xt_rsil()/xt_wsr_ps()
27#include <Arduino.h>
28#elif defined(USE_ESP32_FRAMEWORK_ARDUINO)
29#include <Esp.h>
30#elif defined(USE_ESP_IDF)
31#include <freertos/FreeRTOS.h>
32#include <freertos/portmacro.h>
33#include "esp_mac.h"
34#include "esp_random.h"
35#include "esp_system.h"
36#elif defined(USE_RP2040)
37#if defined(USE_WIFI)
38#include <WiFi.h>
39#endif
40#include <hardware/structs/rosc.h>
41#include <hardware/sync.h>
42#elif defined(USE_HOST)
43#include <limits>
44#include <random>
45#endif
46#ifdef USE_ESP32
47#include "rom/crc.h"
48#include "esp_efuse.h"
49#include "esp_efuse_table.h"
50#endif
51
52#ifdef USE_LIBRETINY
53#include <WiFi.h> // for macAddress()
54#endif
55
56namespace esphome {
57
58static const char *const TAG = "helpers";
59
60static const uint16_t CRC16_A001_LE_LUT_L[] = {0x0000, 0xc0c1, 0xc181, 0x0140, 0xc301, 0x03c0, 0x0280, 0xc241,
61 0xc601, 0x06c0, 0x0780, 0xc741, 0x0500, 0xc5c1, 0xc481, 0x0440};
62static const uint16_t CRC16_A001_LE_LUT_H[] = {0x0000, 0xcc01, 0xd801, 0x1400, 0xf001, 0x3c00, 0x2800, 0xe401,
63 0xa001, 0x6c00, 0x7800, 0xb401, 0x5000, 0x9c01, 0x8801, 0x4400};
64
65#ifndef USE_ESP32
66static const uint16_t CRC16_8408_LE_LUT_L[] = {0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
67 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7};
68static const uint16_t CRC16_8408_LE_LUT_H[] = {0x0000, 0x1081, 0x2102, 0x3183, 0x4204, 0x5285, 0x6306, 0x7387,
69 0x8408, 0x9489, 0xa50a, 0xb58b, 0xc60c, 0xd68d, 0xe70e, 0xf78f};
70#endif
71
72#if !defined(USE_ESP32) || defined(USE_ESP32_VARIANT_ESP32S2)
73static const uint16_t CRC16_1021_BE_LUT_L[] = {0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
74 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef};
75static const uint16_t CRC16_1021_BE_LUT_H[] = {0x0000, 0x1231, 0x2462, 0x3653, 0x48c4, 0x5af5, 0x6ca6, 0x7e97,
76 0x9188, 0x83b9, 0xb5ea, 0xa7db, 0xd94c, 0xcb7d, 0xfd2e, 0xef1f};
77#endif
78
79// STL backports
80
81#if _GLIBCXX_RELEASE < 8
82std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT
83std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT
84std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT
85std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT
86std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT
87std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT
88std::string to_string(float value) { return str_snprintf("%f", 32, value); }
89std::string to_string(double value) { return str_snprintf("%f", 32, value); }
90std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); }
91#endif
92
93// Mathematics
94
95float lerp(float completion, float start, float end) { return start + (end - start) * completion; }
96uint8_t crc8(const uint8_t *data, uint8_t len) {
97 uint8_t crc = 0;
98
99 while ((len--) != 0u) {
100 uint8_t inbyte = *data++;
101 for (uint8_t i = 8; i != 0u; i--) {
102 bool mix = (crc ^ inbyte) & 0x01;
103 crc >>= 1;
104 if (mix)
105 crc ^= 0x8C;
106 inbyte >>= 1;
107 }
108 }
109 return crc;
110}
111
112uint16_t crc16(const uint8_t *data, uint16_t len, uint16_t crc, uint16_t reverse_poly, bool refin, bool refout) {
113#ifdef USE_ESP32
114 if (reverse_poly == 0x8408) {
115 crc = crc16_le(refin ? crc : (crc ^ 0xffff), data, len);
116 return refout ? crc : (crc ^ 0xffff);
117 }
118#endif
119 if (refin) {
120 crc ^= 0xffff;
121 }
122#ifndef USE_ESP32
123 if (reverse_poly == 0x8408) {
124 while (len--) {
125 uint8_t combo = crc ^ (uint8_t) *data++;
126 crc = (crc >> 8) ^ CRC16_8408_LE_LUT_L[combo & 0x0F] ^ CRC16_8408_LE_LUT_H[combo >> 4];
127 }
128 } else
129#endif
130 {
131 if (reverse_poly == 0xa001) {
132 while (len--) {
133 uint8_t combo = crc ^ (uint8_t) *data++;
134 crc = (crc >> 8) ^ CRC16_A001_LE_LUT_L[combo & 0x0F] ^ CRC16_A001_LE_LUT_H[combo >> 4];
135 }
136 } else {
137 while (len--) {
138 crc ^= *data++;
139 for (uint8_t i = 0; i < 8; i++) {
140 if (crc & 0x0001) {
141 crc = (crc >> 1) ^ reverse_poly;
142 } else {
143 crc >>= 1;
144 }
145 }
146 }
147 }
148 }
149 return refout ? (crc ^ 0xffff) : crc;
150}
151
152uint16_t crc16be(const uint8_t *data, uint16_t len, uint16_t crc, uint16_t poly, bool refin, bool refout) {
153#if defined(USE_ESP32) && !defined(USE_ESP32_VARIANT_ESP32S2)
154 if (poly == 0x1021) {
155 crc = crc16_be(refin ? crc : (crc ^ 0xffff), data, len);
156 return refout ? crc : (crc ^ 0xffff);
157 }
158#endif
159 if (refin) {
160 crc ^= 0xffff;
161 }
162#if !defined(USE_ESP32) || defined(USE_ESP32_VARIANT_ESP32S2)
163 if (poly == 0x1021) {
164 while (len--) {
165 uint8_t combo = (crc >> 8) ^ *data++;
166 crc = (crc << 8) ^ CRC16_1021_BE_LUT_L[combo & 0x0F] ^ CRC16_1021_BE_LUT_H[combo >> 4];
167 }
168 } else {
169#endif
170 while (len--) {
171 crc ^= (((uint16_t) *data++) << 8);
172 for (uint8_t i = 0; i < 8; i++) {
173 if (crc & 0x8000) {
174 crc = (crc << 1) ^ poly;
175 } else {
176 crc <<= 1;
177 }
178 }
179 }
180#if !defined(USE_ESP32) || defined(USE_ESP32_VARIANT_ESP32S2)
181 }
182#endif
183 return refout ? (crc ^ 0xffff) : crc;
184}
185
186uint32_t fnv1_hash(const std::string &str) {
187 uint32_t hash = 2166136261UL;
188 for (char c : str) {
189 hash *= 16777619UL;
190 hash ^= c;
191 }
192 return hash;
193}
194
195#ifdef USE_ESP32
196uint32_t random_uint32() { return esp_random(); }
197#elif defined(USE_ESP8266)
198uint32_t random_uint32() { return os_random(); }
199#elif defined(USE_RP2040)
200uint32_t random_uint32() {
201 uint32_t result = 0;
202 for (uint8_t i = 0; i < 32; i++) {
203 result <<= 1;
204 result |= rosc_hw->randombit;
205 }
206 return result;
207}
208#elif defined(USE_LIBRETINY)
209uint32_t random_uint32() { return rand(); }
210#elif defined(USE_HOST)
211uint32_t random_uint32() {
212 std::random_device dev;
213 std::mt19937 rng(dev());
214 std::uniform_int_distribution<uint32_t> dist(0, std::numeric_limits<uint32_t>::max());
215 return dist(rng);
216}
217#endif
218float random_float() { return static_cast<float>(random_uint32()) / static_cast<float>(UINT32_MAX); }
219#ifdef USE_ESP32
220bool random_bytes(uint8_t *data, size_t len) {
221 esp_fill_random(data, len);
222 return true;
223}
224#elif defined(USE_ESP8266)
225bool random_bytes(uint8_t *data, size_t len) { return os_get_random(data, len) == 0; }
226#elif defined(USE_RP2040)
227bool random_bytes(uint8_t *data, size_t len) {
228 while (len-- != 0) {
229 uint8_t result = 0;
230 for (uint8_t i = 0; i < 8; i++) {
231 result <<= 1;
232 result |= rosc_hw->randombit;
233 }
234 *data++ = result;
235 }
236 return true;
237}
238#elif defined(USE_LIBRETINY)
239bool random_bytes(uint8_t *data, size_t len) {
240 lt_rand_bytes(data, len);
241 return true;
242}
243#elif defined(USE_HOST)
244bool random_bytes(uint8_t *data, size_t len) {
245 FILE *fp = fopen("/dev/urandom", "r");
246 if (fp == nullptr) {
247 ESP_LOGW(TAG, "Could not open /dev/urandom, errno=%d", errno);
248 exit(1);
249 }
250 size_t read = fread(data, 1, len, fp);
251 if (read != len) {
252 ESP_LOGW(TAG, "Not enough data from /dev/urandom");
253 exit(1);
254 }
255 fclose(fp);
256 return true;
257}
258#endif
259
260// Strings
261
262bool str_equals_case_insensitive(const std::string &a, const std::string &b) {
263 return strcasecmp(a.c_str(), b.c_str()) == 0;
264}
265#if __cplusplus >= 202002L
266bool str_startswith(const std::string &str, const std::string &start) { return str.starts_with(start); }
267bool str_endswith(const std::string &str, const std::string &end) { return str.ends_with(end); }
268#else
269bool str_startswith(const std::string &str, const std::string &start) { return str.rfind(start, 0) == 0; }
270bool str_endswith(const std::string &str, const std::string &end) {
271 return str.rfind(end) == (str.size() - end.size());
272}
273#endif
274std::string str_truncate(const std::string &str, size_t length) {
275 return str.length() > length ? str.substr(0, length) : str;
276}
277std::string str_until(const char *str, char ch) {
278 const char *pos = strchr(str, ch);
279 return pos == nullptr ? std::string(str) : std::string(str, pos - str);
280}
281std::string str_until(const std::string &str, char ch) { return str.substr(0, str.find(ch)); }
282// wrapper around std::transform to run safely on functions from the ctype.h header
283// see https://en.cppreference.com/w/cpp/string/byte/toupper#Notes
284template<int (*fn)(int)> std::string str_ctype_transform(const std::string &str) {
285 std::string result;
286 result.resize(str.length());
287 std::transform(str.begin(), str.end(), result.begin(), [](unsigned char ch) { return fn(ch); });
288 return result;
289}
290std::string str_lower_case(const std::string &str) { return str_ctype_transform<std::tolower>(str); }
291std::string str_upper_case(const std::string &str) { return str_ctype_transform<std::toupper>(str); }
292std::string str_snake_case(const std::string &str) {
293 std::string result;
294 result.resize(str.length());
295 std::transform(str.begin(), str.end(), result.begin(), ::tolower);
296 std::replace(result.begin(), result.end(), ' ', '_');
297 return result;
298}
299std::string str_sanitize(const std::string &str) {
300 std::string out = str;
301 std::replace_if(
302 out.begin(), out.end(),
303 [](const char &c) {
304 return c != '-' && c != '_' && (c < '0' || c > '9') && (c < 'a' || c > 'z') && (c < 'A' || c > 'Z');
305 },
306 '_');
307 return out;
308}
309std::string str_snprintf(const char *fmt, size_t len, ...) {
310 std::string str;
311 va_list args;
312
313 str.resize(len);
314 va_start(args, len);
315 size_t out_length = vsnprintf(&str[0], len + 1, fmt, args);
316 va_end(args);
317
318 if (out_length < len)
319 str.resize(out_length);
320
321 return str;
322}
323std::string str_sprintf(const char *fmt, ...) {
324 std::string str;
325 va_list args;
326
327 va_start(args, fmt);
328 size_t length = vsnprintf(nullptr, 0, fmt, args);
329 va_end(args);
330
331 str.resize(length);
332 va_start(args, fmt);
333 vsnprintf(&str[0], length + 1, fmt, args);
334 va_end(args);
335
336 return str;
337}
338
339// Parsing & formatting
340
341size_t parse_hex(const char *str, size_t length, uint8_t *data, size_t count) {
342 uint8_t val;
343 size_t chars = std::min(length, 2 * count);
344 for (size_t i = 2 * count - chars; i < 2 * count; i++, str++) {
345 if (*str >= '0' && *str <= '9') {
346 val = *str - '0';
347 } else if (*str >= 'A' && *str <= 'F') {
348 val = 10 + (*str - 'A');
349 } else if (*str >= 'a' && *str <= 'f') {
350 val = 10 + (*str - 'a');
351 } else {
352 return 0;
353 }
354 data[i >> 1] = !(i & 1) ? val << 4 : data[i >> 1] | val;
355 }
356 return chars;
357}
358
359static char format_hex_char(uint8_t v) { return v >= 10 ? 'a' + (v - 10) : '0' + v; }
360std::string format_hex(const uint8_t *data, size_t length) {
361 std::string ret;
362 ret.resize(length * 2);
363 for (size_t i = 0; i < length; i++) {
364 ret[2 * i] = format_hex_char((data[i] & 0xF0) >> 4);
365 ret[2 * i + 1] = format_hex_char(data[i] & 0x0F);
366 }
367 return ret;
368}
369std::string format_hex(const std::vector<uint8_t> &data) { return format_hex(data.data(), data.size()); }
370
371static char format_hex_pretty_char(uint8_t v) { return v >= 10 ? 'A' + (v - 10) : '0' + v; }
372std::string format_hex_pretty(const uint8_t *data, size_t length) {
373 if (length == 0)
374 return "";
375 std::string ret;
376 ret.resize(3 * length - 1);
377 for (size_t i = 0; i < length; i++) {
378 ret[3 * i] = format_hex_pretty_char((data[i] & 0xF0) >> 4);
379 ret[3 * i + 1] = format_hex_pretty_char(data[i] & 0x0F);
380 if (i != length - 1)
381 ret[3 * i + 2] = '.';
382 }
383 if (length > 4)
384 return ret + " (" + to_string(length) + ")";
385 return ret;
386}
387std::string format_hex_pretty(const std::vector<uint8_t> &data) { return format_hex_pretty(data.data(), data.size()); }
388
389std::string format_hex_pretty(const uint16_t *data, size_t length) {
390 if (length == 0)
391 return "";
392 std::string ret;
393 ret.resize(5 * length - 1);
394 for (size_t i = 0; i < length; i++) {
395 ret[5 * i] = format_hex_pretty_char((data[i] & 0xF000) >> 12);
396 ret[5 * i + 1] = format_hex_pretty_char((data[i] & 0x0F00) >> 8);
397 ret[5 * i + 2] = format_hex_pretty_char((data[i] & 0x00F0) >> 4);
398 ret[5 * i + 3] = format_hex_pretty_char(data[i] & 0x000F);
399 if (i != length - 1)
400 ret[5 * i + 2] = '.';
401 }
402 if (length > 4)
403 return ret + " (" + to_string(length) + ")";
404 return ret;
405}
406std::string format_hex_pretty(const std::vector<uint16_t> &data) { return format_hex_pretty(data.data(), data.size()); }
407
408std::string format_bin(const uint8_t *data, size_t length) {
409 std::string result;
410 result.resize(length * 8);
411 for (size_t byte_idx = 0; byte_idx < length; byte_idx++) {
412 for (size_t bit_idx = 0; bit_idx < 8; bit_idx++) {
413 result[byte_idx * 8 + bit_idx] = ((data[byte_idx] >> (7 - bit_idx)) & 1) + '0';
414 }
415 }
416
417 return result;
418}
419
420ParseOnOffState parse_on_off(const char *str, const char *on, const char *off) {
421 if (on == nullptr && strcasecmp(str, "on") == 0)
422 return PARSE_ON;
423 if (on != nullptr && strcasecmp(str, on) == 0)
424 return PARSE_ON;
425 if (off == nullptr && strcasecmp(str, "off") == 0)
426 return PARSE_OFF;
427 if (off != nullptr && strcasecmp(str, off) == 0)
428 return PARSE_OFF;
429 if (strcasecmp(str, "toggle") == 0)
430 return PARSE_TOGGLE;
431
432 return PARSE_NONE;
433}
434
435std::string value_accuracy_to_string(float value, int8_t accuracy_decimals) {
436 if (accuracy_decimals < 0) {
437 auto multiplier = powf(10.0f, accuracy_decimals);
438 value = roundf(value * multiplier) / multiplier;
439 accuracy_decimals = 0;
440 }
441 char tmp[32]; // should be enough, but we should maybe improve this at some point.
442 snprintf(tmp, sizeof(tmp), "%.*f", accuracy_decimals, value);
443 return std::string(tmp);
444}
445
446int8_t step_to_accuracy_decimals(float step) {
447 // use printf %g to find number of digits based on temperature step
448 char buf[32];
449 snprintf(buf, sizeof buf, "%.5g", step);
450
451 std::string str{buf};
452 size_t dot_pos = str.find('.');
453 if (dot_pos == std::string::npos)
454 return 0;
455
456 return str.length() - dot_pos - 1;
457}
458
459static const std::string BASE64_CHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
460 "abcdefghijklmnopqrstuvwxyz"
461 "0123456789+/";
462
463static inline bool is_base64(char c) { return (isalnum(c) || (c == '+') || (c == '/')); }
464
465std::string base64_encode(const std::vector<uint8_t> &buf) { return base64_encode(buf.data(), buf.size()); }
466
467std::string base64_encode(const uint8_t *buf, size_t buf_len) {
468 std::string ret;
469 int i = 0;
470 int j = 0;
471 char char_array_3[3];
472 char char_array_4[4];
473
474 while (buf_len--) {
475 char_array_3[i++] = *(buf++);
476 if (i == 3) {
477 char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
478 char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
479 char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
480 char_array_4[3] = char_array_3[2] & 0x3f;
481
482 for (i = 0; (i < 4); i++)
483 ret += BASE64_CHARS[char_array_4[i]];
484 i = 0;
485 }
486 }
487
488 if (i) {
489 for (j = i; j < 3; j++)
490 char_array_3[j] = '\0';
491
492 char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
493 char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
494 char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
495 char_array_4[3] = char_array_3[2] & 0x3f;
496
497 for (j = 0; (j < i + 1); j++)
498 ret += BASE64_CHARS[char_array_4[j]];
499
500 while ((i++ < 3))
501 ret += '=';
502 }
503
504 return ret;
505}
506
507size_t base64_decode(const std::string &encoded_string, uint8_t *buf, size_t buf_len) {
508 std::vector<uint8_t> decoded = base64_decode(encoded_string);
509 if (decoded.size() > buf_len) {
510 ESP_LOGW(TAG, "Base64 decode: buffer too small, truncating");
511 decoded.resize(buf_len);
512 }
513 memcpy(buf, decoded.data(), decoded.size());
514 return decoded.size();
515}
516
517std::vector<uint8_t> base64_decode(const std::string &encoded_string) {
518 int in_len = encoded_string.size();
519 int i = 0;
520 int j = 0;
521 int in = 0;
522 uint8_t char_array_4[4], char_array_3[3];
523 std::vector<uint8_t> ret;
524
525 while (in_len-- && (encoded_string[in] != '=') && is_base64(encoded_string[in])) {
526 char_array_4[i++] = encoded_string[in];
527 in++;
528 if (i == 4) {
529 for (i = 0; i < 4; i++)
530 char_array_4[i] = BASE64_CHARS.find(char_array_4[i]);
531
532 char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
533 char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
534 char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
535
536 for (i = 0; (i < 3); i++)
537 ret.push_back(char_array_3[i]);
538 i = 0;
539 }
540 }
541
542 if (i) {
543 for (j = i; j < 4; j++)
544 char_array_4[j] = 0;
545
546 for (j = 0; j < 4; j++)
547 char_array_4[j] = BASE64_CHARS.find(char_array_4[j]);
548
549 char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
550 char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
551 char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
552
553 for (j = 0; (j < i - 1); j++)
554 ret.push_back(char_array_3[j]);
555 }
556
557 return ret;
558}
559
560// Colors
561
562float gamma_correct(float value, float gamma) {
563 if (value <= 0.0f)
564 return 0.0f;
565 if (gamma <= 0.0f)
566 return value;
567
568 return powf(value, gamma);
569}
570float gamma_uncorrect(float value, float gamma) {
571 if (value <= 0.0f)
572 return 0.0f;
573 if (gamma <= 0.0f)
574 return value;
575
576 return powf(value, 1 / gamma);
577}
578
579void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value) {
580 float max_color_value = std::max(std::max(red, green), blue);
581 float min_color_value = std::min(std::min(red, green), blue);
582 float delta = max_color_value - min_color_value;
583
584 if (delta == 0) {
585 hue = 0;
586 } else if (max_color_value == red) {
587 hue = int(fmod(((60 * ((green - blue) / delta)) + 360), 360));
588 } else if (max_color_value == green) {
589 hue = int(fmod(((60 * ((blue - red) / delta)) + 120), 360));
590 } else if (max_color_value == blue) {
591 hue = int(fmod(((60 * ((red - green) / delta)) + 240), 360));
592 }
593
594 if (max_color_value == 0) {
595 saturation = 0;
596 } else {
597 saturation = delta / max_color_value;
598 }
599
600 value = max_color_value;
601}
602void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue) {
603 float chroma = value * saturation;
604 float hue_prime = fmod(hue / 60.0, 6);
605 float intermediate = chroma * (1 - fabs(fmod(hue_prime, 2) - 1));
606 float delta = value - chroma;
607
608 if (0 <= hue_prime && hue_prime < 1) {
609 red = chroma;
610 green = intermediate;
611 blue = 0;
612 } else if (1 <= hue_prime && hue_prime < 2) {
613 red = intermediate;
614 green = chroma;
615 blue = 0;
616 } else if (2 <= hue_prime && hue_prime < 3) {
617 red = 0;
618 green = chroma;
619 blue = intermediate;
620 } else if (3 <= hue_prime && hue_prime < 4) {
621 red = 0;
622 green = intermediate;
623 blue = chroma;
624 } else if (4 <= hue_prime && hue_prime < 5) {
625 red = intermediate;
626 green = 0;
627 blue = chroma;
628 } else if (5 <= hue_prime && hue_prime < 6) {
629 red = chroma;
630 green = 0;
631 blue = intermediate;
632 } else {
633 red = 0;
634 green = 0;
635 blue = 0;
636 }
637
638 red += delta;
639 green += delta;
640 blue += delta;
641}
642
643// System APIs
644#if defined(USE_ESP8266) || defined(USE_RP2040) || defined(USE_HOST)
645// ESP8266 doesn't have mutexes, but that shouldn't be an issue as it's single-core and non-preemptive OS.
648void Mutex::lock() {}
649bool Mutex::try_lock() { return true; }
651#elif defined(USE_ESP32) || defined(USE_LIBRETINY)
652Mutex::Mutex() { handle_ = xSemaphoreCreateMutex(); }
653Mutex::~Mutex() {}
654void Mutex::lock() { xSemaphoreTake(this->handle_, portMAX_DELAY); }
655bool Mutex::try_lock() { return xSemaphoreTake(this->handle_, 0) == pdTRUE; }
656void Mutex::unlock() { xSemaphoreGive(this->handle_); }
657#endif
658
659#if defined(USE_ESP8266)
660IRAM_ATTR InterruptLock::InterruptLock() { state_ = xt_rsil(15); }
661IRAM_ATTR InterruptLock::~InterruptLock() { xt_wsr_ps(state_); }
662#elif defined(USE_ESP32) || defined(USE_LIBRETINY)
663// only affects the executing core
664// so should not be used as a mutex lock, only to get accurate timing
665IRAM_ATTR InterruptLock::InterruptLock() { portDISABLE_INTERRUPTS(); }
666IRAM_ATTR InterruptLock::~InterruptLock() { portENABLE_INTERRUPTS(); }
667#elif defined(USE_RP2040)
668IRAM_ATTR InterruptLock::InterruptLock() { state_ = save_and_disable_interrupts(); }
669IRAM_ATTR InterruptLock::~InterruptLock() { restore_interrupts(state_); }
670#endif
671
672uint8_t HighFrequencyLoopRequester::num_requests = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
674 if (this->started_)
675 return;
676 num_requests++;
677 this->started_ = true;
678}
680 if (!this->started_)
681 return;
682 num_requests--;
683 this->started_ = false;
684}
686
687#if defined(USE_HOST)
688void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter)
689 static const uint8_t esphome_host_mac_address[6] = USE_ESPHOME_HOST_MAC_ADDRESS;
690 memcpy(mac, esphome_host_mac_address, sizeof(esphome_host_mac_address));
691}
692#elif defined(USE_ESP32)
693void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter)
694#if defined(CONFIG_SOC_IEEE802154_SUPPORTED)
695 // When CONFIG_SOC_IEEE802154_SUPPORTED is defined, esp_efuse_mac_get_default
696 // returns the 802.15.4 EUI-64 address, so we read directly from eFuse instead.
698 esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48);
699 } else {
700 esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
701 }
702#else
704 esp_efuse_mac_get_custom(mac);
705 } else {
706 esp_efuse_mac_get_default(mac);
707 }
708#endif
709}
710#elif defined(USE_ESP8266)
711void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter)
712 wifi_get_macaddr(STATION_IF, mac);
713}
714#elif defined(USE_RP2040)
715void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter)
716#ifdef USE_WIFI
717 WiFi.macAddress(mac);
718#endif
719}
720#elif defined(USE_LIBRETINY)
721void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter)
722 WiFi.macAddress(mac);
723}
724#endif
725
726std::string get_mac_address() {
727 uint8_t mac[6];
729 return str_snprintf("%02x%02x%02x%02x%02x%02x", 12, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
730}
731
733 uint8_t mac[6];
735 return str_snprintf("%02X:%02X:%02X:%02X:%02X:%02X", 17, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
736}
737
738#ifdef USE_ESP32
739void set_mac_address(uint8_t *mac) { esp_base_mac_addr_set(mac); }
740#endif
741
743#if defined(USE_ESP32) && !defined(USE_ESP32_IGNORE_EFUSE_CUSTOM_MAC)
744 uint8_t mac[6];
745 // do not use 'esp_efuse_mac_get_custom(mac)' because it drops an error in the logs whenever it fails
746#ifndef USE_ESP32_VARIANT_ESP32
747 return (esp_efuse_read_field_blob(ESP_EFUSE_USER_DATA_MAC_CUSTOM, mac, 48) == ESP_OK) && mac_address_is_valid(mac);
748#else
749 return (esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48) == ESP_OK) && mac_address_is_valid(mac);
750#endif
751#else
752 return false;
753#endif
754}
755
756bool mac_address_is_valid(const uint8_t *mac) {
757 bool is_all_zeros = true;
758 bool is_all_ones = true;
759
760 for (uint8_t i = 0; i < 6; i++) {
761 if (mac[i] != 0) {
762 is_all_zeros = false;
763 }
764 }
765 for (uint8_t i = 0; i < 6; i++) {
766 if (mac[i] != 0xFF) {
767 is_all_ones = false;
768 }
769 }
770 return !(is_all_zeros || is_all_ones);
771}
772
773void IRAM_ATTR HOT delay_microseconds_safe(uint32_t us) {
774 // avoids CPU locks that could trigger WDT or affect WiFi/BT stability
775 uint32_t start = micros();
776
777 const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop.
778 // it must be larger than the worst-case duration of a delay(1) call (hardware tasks)
779 // 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known
780 if (us > lag) {
781 delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep
782 while (micros() - start < us - lag)
783 delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks
784 }
785 while (micros() - start < us) // fine delay the remaining usecs
786 ;
787}
788
789} // namespace esphome
void stop()
Stop running the loop continuously.
Definition helpers.cpp:679
static bool is_high_frequency()
Check whether the loop is running continuously.
Definition helpers.cpp:685
void start()
Start running the loop continuously.
Definition helpers.cpp:673
bool try_lock()
Definition helpers.cpp:649
mopeka_std_values val[4]
const char *const TAG
Definition spi.cpp:8
Providing packet encoding functions for exchanging data with a remote host.
Definition a01nyub.cpp:7
uint32_t fnv1_hash(const std::string &str)
Calculate a FNV-1 hash of str.
Definition helpers.cpp:186
bool random_bytes(uint8_t *data, size_t len)
Generate len number of random bytes.
Definition helpers.cpp:220
uint8_t crc8(const uint8_t *data, uint8_t len)
Calculate a CRC-8 checksum of data with size len using the CRC-8-Dallas/Maxim polynomial.
Definition helpers.cpp:96
float random_float()
Return a random float between 0 and 1.
Definition helpers.cpp:218
float gamma_uncorrect(float value, float gamma)
Reverts gamma correction of gamma to value.
Definition helpers.cpp:570
uint16_t crc16(const uint8_t *data, uint16_t len, uint16_t crc, uint16_t reverse_poly, bool refin, bool refout)
Calculate a CRC-16 checksum of data with size len.
Definition helpers.cpp:112
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals)
Create a string from a value and an accuracy in decimals.
Definition helpers.cpp:435
float gamma_correct(float value, float gamma)
Applies gamma correction of gamma to value.
Definition helpers.cpp:562
bool mac_address_is_valid(const uint8_t *mac)
Check if the MAC address is not all zeros or all ones.
Definition helpers.cpp:756
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value)
Convert red, green and blue (all 0-1) values to hue (0-360), saturation (0-1) and value (0-1).
Definition helpers.cpp:579
std::string format_hex(const uint8_t *data, size_t length)
Format the byte array data of length len in lowercased hex.
Definition helpers.cpp:360
std::string str_lower_case(const std::string &str)
Convert the string to lower case.
Definition helpers.cpp:290
ParseOnOffState parse_on_off(const char *str, const char *on, const char *off)
Parse a string that contains either on, off or toggle.
Definition helpers.cpp:420
std::string format_bin(const uint8_t *data, size_t length)
Format the byte array data of length len in binary.
Definition helpers.cpp:408
std::string str_sanitize(const std::string &str)
Sanitizes the input string by removing all characters but alphanumerics, dashes and underscores.
Definition helpers.cpp:299
std::string size_t len
Definition helpers.h:301
bool has_custom_mac_address()
Check if a custom MAC address is set (ESP32 & variants)
Definition helpers.cpp:742
size_t parse_hex(const char *str, size_t length, uint8_t *data, size_t count)
Parse bytes from a hex-encoded string into a byte array.
Definition helpers.cpp:341
std::string get_mac_address_pretty()
Get the device MAC address as a string, in colon-separated uppercase hex notation.
Definition helpers.cpp:732
std::string str_snprintf(const char *fmt, size_t len,...)
Definition helpers.cpp:309
void set_mac_address(uint8_t *mac)
Set the MAC address to use from the provided byte array (6 bytes).
Definition helpers.cpp:739
int8_t step_to_accuracy_decimals(float step)
Derive accuracy in decimals from an increment step.
Definition helpers.cpp:446
uint32_t IRAM_ATTR HOT micros()
Definition core.cpp:29
uint32_t random_uint32()
Return a random 32-bit unsigned integer.
Definition helpers.cpp:196
void IRAM_ATTR HOT delay_microseconds_safe(uint32_t us)
Delay for the given amount of microseconds, possibly yielding to other processes during the wait.
Definition helpers.cpp:773
std::string str_upper_case(const std::string &str)
Convert the string to upper case.
Definition helpers.cpp:291
bool str_equals_case_insensitive(const std::string &a, const std::string &b)
Compare strings for equality in case-insensitive manner.
Definition helpers.cpp:262
std::string str_until(const char *str, char ch)
Extract the part of the string until either the first occurrence of the specified character,...
Definition helpers.cpp:277
std::string base64_encode(const std::vector< uint8_t > &buf)
Definition helpers.cpp:465
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue)
Convert hue (0-360), saturation (0-1) and value (0-1) to red, green and blue (all 0-1).
Definition helpers.cpp:602
uint16_t crc16be(const uint8_t *data, uint16_t len, uint16_t crc, uint16_t poly, bool refin, bool refout)
Definition helpers.cpp:152
std::string to_string(int value)
Definition helpers.cpp:82
ParseOnOffState
Return values for parse_on_off().
Definition helpers.h:440
@ PARSE_ON
Definition helpers.h:442
@ PARSE_TOGGLE
Definition helpers.h:444
@ PARSE_OFF
Definition helpers.h:443
@ PARSE_NONE
Definition helpers.h:441
std::string str_sprintf(const char *fmt,...)
Definition helpers.cpp:323
void get_mac_address_raw(uint8_t *mac)
Get the device MAC address as raw bytes, written into the provided byte array (6 bytes).
Definition helpers.cpp:688
bool str_startswith(const std::string &str, const std::string &start)
Check whether a string starts with a value.
Definition helpers.cpp:266
void IRAM_ATTR HOT delay(uint32_t ms)
Definition core.cpp:28
std::string get_mac_address()
Get the device MAC address as a string, in lowercase hex notation.
Definition helpers.cpp:726
std::string str_snake_case(const std::string &str)
Convert the string to snake case (lowercase with underscores).
Definition helpers.cpp:292
bool str_endswith(const std::string &str, const std::string &end)
Check whether a string ends with a value.
Definition helpers.cpp:267
float lerp(float completion, float start, float end)
Linearly interpolate between start and end by completion (between 0 and 1).
Definition helpers.cpp:95
size_t base64_decode(const std::string &encoded_string, uint8_t *buf, size_t buf_len)
Definition helpers.cpp:507
std::string str_ctype_transform(const std::string &str)
Definition helpers.cpp:284
std::string format_hex_pretty(const uint8_t *data, size_t length)
Format the byte array data of length len in pretty-printed, human-readable hex.
Definition helpers.cpp:372
std::string str_truncate(const std::string &str, size_t length)
Truncate a string to a specific length.
Definition helpers.cpp:274
uint8_t end[39]
Definition sun_gtil2.cpp:17
uint16_t length
Definition tt21100.cpp:0