ESPHome 2025.5.0
Loading...
Searching...
No Matches
sun.cpp
Go to the documentation of this file.
1#include "sun.h"
2#include "esphome/core/log.h"
3
4/*
5The formulas/algorithms in this module are based on the book
6"Astronomical algorithms" by Jean Meeus (2nd edition)
7
8The target accuracy of this implementation is ~1min for sunrise/sunset calculations,
9and 6 arcminutes for elevation/azimuth. As such, some of the advanced correction factors
10like exact nutation are not included. But in some testing the accuracy appears to be within range
11for random spots around the globe.
12*/
13
14namespace esphome {
15namespace sun {
16
17using namespace esphome::sun::internal;
18
19static const char *const TAG = "sun";
20
21#undef PI
22#undef degrees
23#undef radians
24#undef sq
25
26static const num_t PI = 3.141592653589793;
27inline num_t degrees(num_t rad) { return rad * 180 / PI; }
28inline num_t radians(num_t deg) { return deg * PI / 180; }
29inline num_t arcdeg(num_t deg, num_t minutes, num_t seconds) { return deg + minutes / 60 + seconds / 3600; }
30inline num_t sq(num_t x) { return x * x; }
31inline num_t cb(num_t x) { return x * x * x; }
32
39
41 // p. 59
42 // UT -> JD, TT -> JDE
43 int y = moment.year;
44 int m = moment.month;
45 num_t d = moment.day_of_month;
46 d += moment.hour / 24.0;
47 d += moment.minute / (24.0 * 60);
48 d += moment.second / (24.0 * 60 * 60);
49 if (m <= 2) {
50 y -= 1;
51 m += 12;
52 }
53 int a = y / 100;
54 int b = 2 - a + a / 4;
55 return ((int) (365.25 * (y + 4716))) + ((int) (30.6001 * (m + 1))) + d + b - 1524.5;
56}
58 // approximation for 2005-2050 from NASA (https://eclipse.gsfc.nasa.gov/SEhelp/deltatpoly2004.html)
59 int t = moment.year - 2000;
60 return 62.92 + t * (0.32217 + t * 0.005589);
61}
62// Perform a fractional module operation where the result will always be positive (wrapping around)
64 num_t res = fmod(x, y);
65 if (res < 0)
66 res += y;
67 return res;
68}
69
70num_t internal::Moment::jd() const { return julian_day(dt); }
71
73 // dt is in UT1, but JDE is based on TT
74 // so add deltaT factor
75 return jd() + delta_t(dt) / (60 * 60 * 24);
76}
77
78struct SunAtTime {
79 num_t jde;
80 num_t t;
81
82 // eq 25.1, p. 163; julian centuries from the epoch J2000.0
83 SunAtTime(num_t jde) : jde(jde), t((jde - 2451545) / 36525.0) {}
84
85 num_t mean_obliquity() const {
86 // eq. 22.2, p. 147; mean obliquity of the ecliptic
87 num_t epsilon_0 = (+arcdeg(23, 26, 21.448) - arcdeg(0, 0, 46.8150) * t - arcdeg(0, 0, 0.00059) * sq(t) +
88 arcdeg(0, 0, 0.001813) * cb(t));
89 return epsilon_0;
90 }
91
92 num_t omega() const {
93 // eq. 25.8, p. 165; correction factor for obliquity of the ecliptic
94 // in degrees
95 num_t omega = 125.05 - 1934.136 * t;
96 return omega;
97 }
98
99 num_t true_obliquity() const {
100 // eq. 25.8, p. 165; correction factor for obliquity of the ecliptic
101 num_t delta_epsilon = 0.00256 * cos(radians(omega()));
102 num_t epsilon = mean_obliquity() + delta_epsilon;
103 return epsilon;
104 }
105
106 num_t mean_longitude() const {
107 // eq 25.2, p. 163; geometric mean longitude = mean equinox of the date in degrees
108 num_t l0 = 280.46646 + 36000.76983 * t + 0.0003032 * sq(t);
109 return wmod(l0, 360);
110 }
111
112 num_t eccentricity() const {
113 // eq 25.4, p. 163; eccentricity of earth's orbit
114 num_t e = 0.016708634 - 0.000042037 * t - 0.0000001267 * sq(t);
115 return e;
116 }
117
118 num_t mean_anomaly() const {
119 // eq 25.3, p. 163; mean anomaly of the sun in degrees
120 num_t m = 357.52911 + 35999.05029 * t - 0.0001537 * sq(t);
121 return wmod(m, 360);
122 }
123
124 num_t equation_of_center() const {
125 // p. 164; sun's equation of the center c in degrees
126 num_t m_rad = radians(mean_anomaly());
127 num_t c = ((1.914602 - 0.004817 * t - 0.000014 * sq(t)) * sin(m_rad) + (0.019993 - 0.000101 * t) * sin(2 * m_rad) +
128 0.000289 * sin(3 * m_rad));
129 return wmod(c, 360);
130 }
131
132 num_t true_longitude() const {
133 // p. 164; sun's true longitude in degrees
134 num_t x = mean_longitude() + equation_of_center();
135 return wmod(x, 360);
136 }
137
138 num_t true_anomaly() const {
139 // p. 164; sun's true anomaly in degrees
140 num_t x = mean_anomaly() + equation_of_center();
141 return wmod(x, 360);
142 }
143
144 num_t apparent_longitude() const {
145 // p. 164; sun's apparent longitude = true equinox in degrees
146 num_t x = true_longitude() - 0.00569 - 0.00478 * sin(radians(omega()));
147 return wmod(x, 360);
148 }
149
150 EquatorialCoordinate equatorial_coordinate() const {
151 num_t epsilon_rad = radians(true_obliquity());
152 // eq. 25.6; p. 165; sun's right ascension alpha
153 num_t app_lon_rad = radians(apparent_longitude());
154 num_t right_ascension_rad = atan2(cos(epsilon_rad) * sin(app_lon_rad), cos(app_lon_rad));
155 num_t declination_rad = asin(sin(epsilon_rad) * sin(app_lon_rad));
156 return EquatorialCoordinate{degrees(right_ascension_rad), degrees(declination_rad)};
157 }
158
159 num_t equation_of_time() const {
160 // chapter 28, p. 185
161 num_t epsilon_half = radians(true_obliquity() / 2);
162 num_t y = sq(tan(epsilon_half));
163 num_t l2 = 2 * mean_longitude();
164 num_t l2_rad = radians(l2);
165 num_t e = eccentricity();
166 num_t m = mean_anomaly();
167 num_t m_rad = radians(m);
168 num_t sin_m = sin(m_rad);
169 num_t eot = (y * sin(l2_rad) - 2 * e * sin_m + 4 * e * y * sin_m * cos(l2_rad) - 1 / 2.0 * sq(y) * sin(2 * l2_rad) -
170 5 / 4.0 * sq(e) * sin(2 * m_rad));
171 return degrees(eot);
172 }
173
174 void debug() const {
175 // debug output like in example 25.a, p. 165
176 ESP_LOGV(TAG, "jde: %f", jde);
177 ESP_LOGV(TAG, "T: %f", t);
178 ESP_LOGV(TAG, "L_0: %f", mean_longitude());
179 ESP_LOGV(TAG, "M: %f", mean_anomaly());
180 ESP_LOGV(TAG, "e: %f", eccentricity());
181 ESP_LOGV(TAG, "C: %f", equation_of_center());
182 ESP_LOGV(TAG, "Odot: %f", true_longitude());
183 ESP_LOGV(TAG, "Omega: %f", omega());
184 ESP_LOGV(TAG, "lambda: %f", apparent_longitude());
185 ESP_LOGV(TAG, "epsilon_0: %f", mean_obliquity());
186 ESP_LOGV(TAG, "epsilon: %f", true_obliquity());
187 ESP_LOGV(TAG, "v: %f", true_anomaly());
188 auto eq = equatorial_coordinate();
189 ESP_LOGV(TAG, "right_ascension: %f", eq.right_ascension);
190 ESP_LOGV(TAG, "declination: %f", eq.declination);
191 }
192};
193
194struct SunAtLocation {
195 GeoLocation location;
196
197 num_t greenwich_sidereal_time(Moment moment) const {
198 // Return the greenwich mean sidereal time for this instant in degrees
199 // see chapter 12, p. 87
200 num_t jd = moment.jd();
201 // eq 12.1, p.87; jd for 0h UT of this date
202 ESPTime moment_0h = moment.dt;
203 moment_0h.hour = moment_0h.minute = moment_0h.second = 0;
204 num_t jd0 = Moment{moment_0h}.jd();
205 num_t t = (jd0 - 2451545) / 36525;
206 // eq. 12.4, p.88
207 num_t gmst = (+280.46061837 + 360.98564736629 * (jd - 2451545) + 0.000387933 * sq(t) - (1 / 38710000.0) * cb(t));
208 return wmod(gmst, 360);
209 }
210
211 HorizontalCoordinate true_coordinate(Moment moment) const {
212 auto eq = SunAtTime(moment.jde()).equatorial_coordinate();
213 num_t gmst = greenwich_sidereal_time(moment);
214 // do not apply any nutation correction (not important for our target accuracy)
215 num_t nutation_corr = 0;
216
217 num_t ra = eq.right_ascension;
218 num_t alpha = gmst + nutation_corr + location.longitude - ra;
219 alpha = wmod(alpha, 360);
220 num_t alpha_rad = radians(alpha);
221
222 num_t sin_lat = sin(location.latitude_rad());
223 num_t cos_lat = cos(location.latitude_rad());
224 num_t sin_elevation = (+sin_lat * sin(eq.declination_rad()) + cos_lat * cos(eq.declination_rad()) * cos(alpha_rad));
225 num_t elevation_rad = asin(sin_elevation);
226 num_t azimuth_rad = atan2(sin(alpha_rad), cos(alpha_rad) * sin_lat - tan(eq.declination_rad()) * cos_lat);
227 return HorizontalCoordinate{degrees(elevation_rad), degrees(azimuth_rad) + 180};
228 }
229
230 optional<ESPTime> sunrise(ESPTime date, num_t zenith) const { return event(true, date, zenith); }
231 optional<ESPTime> sunset(ESPTime date, num_t zenith) const { return event(false, date, zenith); }
232 optional<ESPTime> event(bool rise, ESPTime date, num_t zenith) const {
233 // couldn't get the method described in chapter 15 to work,
234 // so instead this is based on the algorithm in time4j
235 // https://github.com/MenoData/Time4J/blob/master/base/src/main/java/net/time4j/calendar/astro/StdSolarCalculator.java
236 auto m = local_event_(date, 12); // noon
237 num_t jde = julian_day(m);
238 num_t new_h = 0, old_h;
239 do {
240 old_h = new_h;
241 auto x = local_hour_angle_(jde + old_h / 86400, rise, zenith);
242 if (!x.has_value())
243 return {};
244 new_h = *x;
245 } while (std::abs(new_h - old_h) >= 15);
246 time_t new_timestamp = m.timestamp + (time_t) new_h;
247 return ESPTime::from_epoch_local(new_timestamp);
248 }
249
250 protected:
251 optional<num_t> local_hour_angle_(num_t jde, bool rise, num_t zenith) const {
252 auto pos = SunAtTime(jde).equatorial_coordinate();
253 num_t dec_rad = pos.declination_rad();
254 num_t lat_rad = location.latitude_rad();
255 num_t num = cos(radians(zenith)) - (sin(dec_rad) * sin(lat_rad));
256 num_t denom = cos(dec_rad) * cos(lat_rad);
257 num_t cos_h = num / denom;
258 if (cos_h > 1 || cos_h < -1)
259 return {};
260 num_t hour_angle = degrees(acos(cos_h)) * 240;
261 if (rise)
262 hour_angle *= -1;
263 return hour_angle;
264 }
265
266 ESPTime local_event_(ESPTime date, int hour) const {
267 // input date should be in UTC, and hour/minute/second fields 0
268 num_t added_d = hour / 24.0 - location.longitude / 360;
269 num_t jd = julian_day(date) + added_d;
270
271 num_t eot = SunAtTime(jd).equation_of_time() * 240;
272 time_t new_timestamp = (time_t) (date.timestamp + added_d * 86400 - eot);
273 return ESPTime::from_epoch_utc(new_timestamp);
274 }
275};
276
278 SunAtLocation sun{location_};
279 Moment m{time_->utcnow()};
280 if (!m.dt.is_valid())
281 return HorizontalCoordinate{NAN, NAN};
282
283 // uncomment to print some debug output
284 /*
285 SunAtTime st{m.jde()};
286 st.debug();
287 */
288 return sun.true_coordinate(m);
289}
290optional<ESPTime> Sun::calc_event_(ESPTime date, bool rising, double zenith) {
291 SunAtLocation sun{location_};
292 if (!date.is_valid())
293 return {};
294 // Calculate UT1 timestamp at 0h
295 auto today = date;
296 today.hour = today.minute = today.second = 0;
297 today.recalc_timestamp_utc();
298
299 auto it = sun.event(rising, today, zenith);
300 if (it.has_value() && it->timestamp < date.timestamp) {
301 // We're calculating *next* sunrise/sunset, but calculated event
302 // is today, so try again tomorrow
303 time_t new_timestamp = today.timestamp + 24 * 60 * 60;
304 today = ESPTime::from_epoch_utc(new_timestamp);
305 it = sun.event(rising, today, zenith);
306 }
307 return it;
308}
309optional<ESPTime> Sun::calc_event_(bool rising, double zenith) {
310 auto it = Sun::calc_event_(this->time_->utcnow(), rising, zenith);
311 return it;
312}
313
314optional<ESPTime> Sun::sunrise(double elevation) { return this->calc_event_(true, 90 - elevation); }
315optional<ESPTime> Sun::sunset(double elevation) { return this->calc_event_(false, 90 - elevation); }
316optional<ESPTime> Sun::sunrise(ESPTime date, double elevation) { return this->calc_event_(date, true, 90 - elevation); }
317optional<ESPTime> Sun::sunset(ESPTime date, double elevation) { return this->calc_event_(date, false, 90 - elevation); }
318double Sun::elevation() { return this->calc_coords_().elevation; }
319double Sun::azimuth() { return this->calc_coords_().azimuth; }
320
321} // namespace sun
322} // namespace esphome
uint8_t m
Definition bl0906.h:1
optional< ESPTime > calc_event_(bool rising, double zenith)
Definition sun.cpp:309
double elevation()
Definition sun.cpp:318
internal::HorizontalCoordinate calc_coords_()
Definition sun.cpp:277
optional< ESPTime > sunset(double elevation)
Definition sun.cpp:315
optional< ESPTime > sunrise(double elevation)
Definition sun.cpp:314
double azimuth()
Definition sun.cpp:319
uint8_t hour
const char *const TAG
Definition spi.cpp:8
num_t delta_t(ESPTime moment)
Definition sun.cpp:57
num_t wmod(num_t x, num_t y)
Definition sun.cpp:63
num_t degrees(num_t rad)
Definition sun.cpp:27
num_t arcdeg(num_t deg, num_t minutes, num_t seconds)
Definition sun.cpp:29
num_t radians(num_t deg)
Definition sun.cpp:28
num_t cb(num_t x)
Definition sun.cpp:31
num_t julian_day(ESPTime moment)
Definition sun.cpp:40
num_t sq(num_t x)
Definition sun.cpp:30
Providing packet encoding functions for exchanging data with a remote host.
Definition a01nyub.cpp:7
A more user-friendly version of struct tm from time.h.
Definition time.h:15
uint8_t minute
minutes after the hour [0-59]
Definition time.h:21
uint8_t second
seconds after the minute [0-60]
Definition time.h:19
uint8_t hour
hours since midnight [0-23]
Definition time.h:23
time_t timestamp
unix epoch time (seconds since UTC Midnight January 1, 1970)
Definition time.h:37
bool is_valid() const
Check if this ESPTime is valid (all fields in range and year is greater than 2018)
Definition time.h:59
static ESPTime from_epoch_utc(time_t epoch)
Convert an UTC epoch timestamp to a UTC time ESPTime instance.
Definition time.h:92
uint8_t day_of_month
day of the month [1-31]
Definition time.h:27
uint16_t year
year
Definition time.h:33
uint8_t month
month; january=1 [1-12]
Definition time.h:31
uint16_t x
Definition tt21100.cpp:5
uint16_t y
Definition tt21100.cpp:6