ESPHome 2025.5.0
Loading...
Searching...
No Matches
cs5460a.cpp
Go to the documentation of this file.
1#include "cs5460a.h"
2#include "esphome/core/log.h"
3
4namespace esphome {
5namespace cs5460a {
6
7static const char *const TAG = "cs5460a";
8
9void CS5460AComponent::write_register_(enum CS5460ARegister addr, uint32_t value) {
10 this->write_byte(CMD_WRITE | (addr << 1));
11 this->write_byte(value >> 16);
12 this->write_byte(value >> 8);
13 this->write_byte(value >> 0);
14}
15
16uint32_t CS5460AComponent::read_register_(uint8_t addr) {
17 uint32_t value;
18
19 this->write_byte(CMD_READ | (addr << 1));
20 value = (uint32_t) this->transfer_byte(CMD_SYNC0) << 16;
21 value |= (uint32_t) this->transfer_byte(CMD_SYNC0) << 8;
22 value |= this->transfer_byte(CMD_SYNC0) << 0;
23
24 return value;
25}
26
28 uint32_t pc = ((uint8_t) phase_offset_ & 0x3f) | (phase_offset_ < 0 ? 0x40 : 0);
29 uint32_t config = (1 << 0) | /* K = 0b0001 */
30 (current_hpf_ ? 1 << 5 : 0) | /* IHPF */
31 (voltage_hpf_ ? 1 << 6 : 0) | /* VHPF */
32 (pga_gain_ << 16) | /* Gi */
33 (pc << 17); /* PC */
34 int cnt = 0;
35
36 /* Serial resynchronization */
37 this->write_byte(CMD_SYNC1);
38 this->write_byte(CMD_SYNC1);
39 this->write_byte(CMD_SYNC1);
40 this->write_byte(CMD_SYNC0);
41
42 /* Reset */
43 this->write_register_(REG_CONFIG, 1 << 7);
44 delay(10);
45 while (cnt++ < 50 && (this->read_register_(REG_CONFIG) & 0x81) != 0x000001)
46 ;
47 if (cnt > 50)
48 return false;
49
50 this->write_register_(REG_CONFIG, config);
51 return true;
52}
53
55 ESP_LOGCONFIG(TAG, "Setting up CS5460A...");
56
57 float current_full_scale = (pga_gain_ == CS5460A_PGA_GAIN_10X) ? 0.25 : 0.10;
58 float voltage_full_scale = 0.25;
59 current_multiplier_ = current_full_scale / (fabsf(current_gain_) * 0x1000000);
60 voltage_multiplier_ = voltage_full_scale / (voltage_gain_ * 0x1000000);
61
62 /*
63 * Calculate power from the Energy register because the Power register
64 * stores instantaneous power which varies a lot in each AC cycle,
65 * while the Energy value is accumulated over the "computation cycle"
66 * which should be an integer number of AC cycles.
67 */
69 (current_full_scale * voltage_full_scale * 4096) / (current_gain_ * voltage_gain_ * samples_ * 0x800000);
70
72 (current_full_scale * voltage_full_scale) / (fabsf(current_gain_) * voltage_gain_ * pulse_energy_wh_ * 3600);
73
74 hw_init_();
75}
76
78 this->spi_setup();
79 this->enable();
80
81 if (!this->softreset_()) {
82 this->disable();
83 ESP_LOGE(TAG, "CS5460A reset failed!");
84 this->mark_failed();
85 return;
86 }
87
88 uint32_t status = this->read_register_(REG_STATUS);
89 ESP_LOGCONFIG(TAG, " Version: %" PRIx32, (status >> 6) & 7);
90
92 this->write_register_(REG_PULSE_RATE, lroundf(pulse_freq_ * 32.0f));
93
94 /* Use one of the power saving features (assuming external oscillator), reset other CONTROL bits,
95 * sometimes softreset_() is not enough */
96 this->write_register_(REG_CONTROL, 0x000004);
97
98 this->restart_();
99 this->disable();
100 ESP_LOGCONFIG(TAG, " Init ok");
101}
102
103/* Doesn't reset the register values etc., just restarts the "computation cycle" */
105 this->enable();
106 /* Stop running conversion, wake up if needed */
108 /* Start continuous conversion */
110 this->disable();
111
112 this->started_();
113}
114
116 /*
117 * Try to guess when the next batch of results is going to be ready and
118 * schedule next STATUS check some time before that moment. This assumes
119 * two things:
120 * * a new "computation cycle" started just now. If it started some
121 * time ago we may be a late next time, but hopefully less late in each
122 * iteration -- that's why we schedule the next check in some 0.8 of
123 * the time we actually expect the next reading ready.
124 * * MCLK rate is 4.096MHz and K == 1. If there's a CS5460A module in
125 * use with a different clock this will need to be parametrised.
126 */
127 expect_data_ts_ = millis() + samples_ * 1024 / 4096;
128
130}
131
133 int32_t time_left = expect_data_ts_ - millis();
134
135 /* First try at 0.8 of the actual expected time (if it's in the future) */
136 if (time_left > 0)
137 time_left -= time_left / 5;
138
139 if (time_left > -500) {
140 /* But not sooner than in 30ms from now */
141 if (time_left < 30)
142 time_left = 30;
143 } else {
144 /*
145 * If the measurement is more than 0.5s overdue start worrying. The
146 * device may be stuck because of an overcurrent error or similar,
147 * from now on just retry every 1s. After 15s try a reset, if it
148 * fails we give up and mark the component "failed".
149 */
150 if (time_left > -15000) {
151 time_left = 1000;
152 this->status_momentary_warning("warning", 1000);
153 } else {
154 ESP_LOGCONFIG(TAG, "Device officially stuck, resetting");
155 this->cancel_timeout("status-check");
156 this->hw_init_();
157 return;
158 }
159 }
160
161 this->set_timeout("status-check", time_left, [this]() {
162 if (!this->check_status_())
163 this->schedule_next_check_();
164 });
165}
166
168 this->enable();
169 uint32_t status = this->read_register_(REG_STATUS);
170
171 if (!(status & 0xcbf83c)) {
172 this->disable();
173 return false;
174 }
175
176 uint32_t clear = 1 << 20;
177
178 /* TODO: Report if IC=0 but only once as it can't be cleared */
179
180 if (status & (1 << 2)) {
181 clear |= 1 << 2;
182 ESP_LOGE(TAG, "Low supply detected");
183 this->status_momentary_warning("warning", 500);
184 }
185
186 if (status & (1 << 3)) {
187 clear |= 1 << 3;
188 ESP_LOGE(TAG, "Modulator oscillation on current channel");
189 this->status_momentary_warning("warning", 500);
190 }
191
192 if (status & (1 << 4)) {
193 clear |= 1 << 4;
194 ESP_LOGE(TAG, "Modulator oscillation on voltage channel");
195 this->status_momentary_warning("warning", 500);
196 }
197
198 if (status & (1 << 5)) {
199 clear |= 1 << 5;
200 ESP_LOGE(TAG, "Watch-dog timeout");
201 this->status_momentary_warning("warning", 500);
202 }
203
204 if (status & (1 << 11)) {
205 clear |= 1 << 11;
206 ESP_LOGE(TAG, "EOUT Energy Accumulation Register out of range");
207 this->status_momentary_warning("warning", 500);
208 }
209
210 if (status & (1 << 12)) {
211 clear |= 1 << 12;
212 ESP_LOGE(TAG, "Energy out of range");
213 this->status_momentary_warning("warning", 500);
214 }
215
216 if (status & (1 << 13)) {
217 clear |= 1 << 13;
218 ESP_LOGE(TAG, "RMS voltage out of range");
219 this->status_momentary_warning("warning", 500);
220 }
221
222 if (status & (1 << 14)) {
223 clear |= 1 << 14;
224 ESP_LOGE(TAG, "RMS current out of range");
225 this->status_momentary_warning("warning", 500);
226 }
227
228 if (status & (1 << 15)) {
229 clear |= 1 << 15;
230 ESP_LOGE(TAG, "Power calculation out of range");
231 this->status_momentary_warning("warning", 500);
232 }
233
234 if (status & (1 << 16)) {
235 clear |= 1 << 16;
236 ESP_LOGE(TAG, "Voltage out of range");
237 this->status_momentary_warning("warning", 500);
238 }
239
240 if (status & (1 << 17)) {
241 clear |= 1 << 17;
242 ESP_LOGE(TAG, "Current out of range");
243 this->status_momentary_warning("warning", 500);
244 }
245
246 if (status & (1 << 19)) {
247 clear |= 1 << 19;
248 ESP_LOGE(TAG, "Divide overflowed");
249 }
250
251 if (status & (1 << 22)) {
252 bool dir = status & (1 << 21);
253 if (current_gain_ < 0)
254 dir = !dir;
255 ESP_LOGI(TAG, "Energy counter %s pulse", dir ? "negative" : "positive");
256 clear |= 1 << 22;
257 }
258
259 uint32_t raw_current = 0; /* Calm the validators */
260 uint32_t raw_voltage = 0;
261 uint32_t raw_energy = 0;
262
263 if (status & (1 << 23)) {
264 clear |= 1 << 23;
265
266 if (current_sensor_ != nullptr)
267 raw_current = this->read_register_(REG_IRMS);
268
269 if (voltage_sensor_ != nullptr)
270 raw_voltage = this->read_register_(REG_VRMS);
271 }
272
273 if (status & ((1 << 23) | (1 << 5))) {
274 /* Read to clear the WDT bit */
275 raw_energy = this->read_register_(REG_E);
276 }
277
278 this->write_register_(REG_STATUS, clear);
279 this->disable();
280
281 /*
282 * Schedule the next STATUS check assuming that DRDY was asserted very
283 * recently, then publish the new values. Do this last for reentrancy in
284 * case the publish triggers a restart() or for whatever reason needs to
285 * cancel the timeout set in schedule_next_check_(), or needs to use SPI.
286 * If the current or power values haven't changed one bit it may be that
287 * the chip somehow forgot to update the registers -- seen happening very
288 * rarely. In that case don't publish them because the user may have
289 * the input connected to a multiplexer and may have switched channels
290 * since the previous reading and we'd be publishing the stale value for
291 * the new channel. If the value *was* updated it's very unlikely that
292 * it wouldn't have changed, especially power/energy which are affected
293 * by the noise on both the current and value channels (in case of energy,
294 * accumulated over many conversion cycles.)
295 */
296 if (status & (1 << 23)) {
297 this->started_();
298
299 if (current_sensor_ != nullptr && raw_current != prev_raw_current_) {
301 prev_raw_current_ = raw_current;
302 }
303
304 if (voltage_sensor_ != nullptr)
306
307 if (power_sensor_ != nullptr && raw_energy != prev_raw_energy_) {
308 int32_t raw = (int32_t) (raw_energy << 8) >> 8; /* Sign-extend */
310 prev_raw_energy_ = raw_energy;
311 }
312
313 return true;
314 }
315
316 return false;
317}
318
320 uint32_t state = this->get_component_state();
321
322 ESP_LOGCONFIG(TAG, "CS5460A:");
323 ESP_LOGCONFIG(TAG, " Init status: %s",
324 state == COMPONENT_STATE_LOOP ? "OK" : (state == COMPONENT_STATE_FAILED ? "failed" : "other"));
325 LOG_PIN(" CS Pin: ", cs_);
326 ESP_LOGCONFIG(TAG, " Samples / cycle: %" PRIu32, samples_);
327 ESP_LOGCONFIG(TAG, " Phase offset: %i", phase_offset_);
328 ESP_LOGCONFIG(TAG, " PGA Gain: %s", pga_gain_ == CS5460A_PGA_GAIN_50X ? "50x" : "10x");
329 ESP_LOGCONFIG(TAG, " Current gain: %.5f", current_gain_);
330 ESP_LOGCONFIG(TAG, " Voltage gain: %.5f", voltage_gain_);
331 ESP_LOGCONFIG(TAG, " Current HPF: %s", current_hpf_ ? "enabled" : "disabled");
332 ESP_LOGCONFIG(TAG, " Voltage HPF: %s", voltage_hpf_ ? "enabled" : "disabled");
333 ESP_LOGCONFIG(TAG, " Pulse energy: %.2f Wh", pulse_energy_wh_);
334 LOG_SENSOR(" ", "Voltage", voltage_sensor_);
335 LOG_SENSOR(" ", "Current", current_sensor_);
336 LOG_SENSOR(" ", "Power", power_sensor_);
337}
338
339} // namespace cs5460a
340} // namespace esphome
uint8_t raw[35]
Definition bl0939.h:0
uint8_t status
Definition bl0942.h:8
virtual void mark_failed()
Mark this component as failed.
bool cancel_timeout(const std::string &name)
Cancel a timeout function.
Definition component.cpp:76
void status_momentary_warning(const std::string &name, uint32_t length=5000)
uint32_t get_component_state() const
Definition component.cpp:89
void set_timeout(const std::string &name, uint32_t timeout, std::function< void()> &&f)
Set a timeout function with a unique name.
Definition component.cpp:72
void write_register_(enum CS5460ARegister addr, uint32_t value)
Definition cs5460a.cpp:9
sensor::Sensor * voltage_sensor_
Definition cs5460a.h:93
uint32_t read_register_(uint8_t addr)
Definition cs5460a.cpp:16
sensor::Sensor * power_sensor_
Definition cs5460a.h:94
sensor::Sensor * current_sensor_
Definition cs5460a.h:92
void publish_state(float state)
Publish a new state to the front-end.
Definition sensor.cpp:39
bool state
Definition fan.h:0
u_int8_t raw_voltage
Providing packet encoding functions for exchanging data with a remote host.
Definition a01nyub.cpp:7
const uint32_t COMPONENT_STATE_FAILED
Definition component.cpp:36
const uint32_t COMPONENT_STATE_LOOP
Definition component.cpp:35
void IRAM_ATTR HOT delay(uint32_t ms)
Definition core.cpp:28
uint32_t IRAM_ATTR HOT millis()
Definition core.cpp:27