ESPHome 2025.5.0
Loading...
Searching...
No Matches
cse7761.cpp
Go to the documentation of this file.
1#include "cse7761.h"
2
3#include "esphome/core/log.h"
4
5namespace esphome {
6namespace cse7761 {
7
8static const char *const TAG = "cse7761";
9
10/*********************************************************************************************\
11 * CSE7761 - Energy (Sonoff Dual R3 Pow v1.x)
12 *
13 * Based on Tasmota source code
14 * See https://github.com/arendst/Tasmota/discussions/10793
15 * https://github.com/arendst/Tasmota/blob/development/tasmota/xnrg_19_cse7761.ino
16\*********************************************************************************************/
17
18static const int CSE7761_UREF = 42563; // RmsUc
19static const int CSE7761_IREF = 52241; // RmsIAC
20static const int CSE7761_PREF = 44513; // PowerPAC
21
22static const uint8_t CSE7761_REG_SYSCON = 0x00; // (2) System Control Register (0x0A04)
23static const uint8_t CSE7761_REG_EMUCON = 0x01; // (2) Metering control register (0x0000)
24static const uint8_t CSE7761_REG_EMUCON2 = 0x13; // (2) Metering control register 2 (0x0001)
25static const uint8_t CSE7761_REG_PULSE1SEL = 0x1D; // (2) Pin function output select register (0x3210)
26
27static const uint8_t CSE7761_REG_RMSIA = 0x24; // (3) The effective value of channel A current (0x000000)
28static const uint8_t CSE7761_REG_RMSIB = 0x25; // (3) The effective value of channel B current (0x000000)
29static const uint8_t CSE7761_REG_RMSU = 0x26; // (3) Voltage RMS (0x000000)
30static const uint8_t CSE7761_REG_POWERPA = 0x2C; // (4) Channel A active power, update rate 27.2Hz (0x00000000)
31static const uint8_t CSE7761_REG_POWERPB = 0x2D; // (4) Channel B active power, update rate 27.2Hz (0x00000000)
32static const uint8_t CSE7761_REG_SYSSTATUS = 0x43; // (1) System status register
33
34static const uint8_t CSE7761_REG_COEFFCHKSUM = 0x6F; // (2) Coefficient checksum
35static const uint8_t CSE7761_REG_RMSIAC = 0x70; // (2) Channel A effective current conversion coefficient
36
37static const uint8_t CSE7761_SPECIAL_COMMAND = 0xEA; // Start special command
38static const uint8_t CSE7761_CMD_RESET = 0x96; // Reset command, after receiving the command, the chip resets
39static const uint8_t CSE7761_CMD_CLOSE_WRITE = 0xDC; // Close write operation
40static const uint8_t CSE7761_CMD_ENABLE_WRITE = 0xE5; // Enable write operation
41
43
45 ESP_LOGCONFIG(TAG, "Setting up CSE7761...");
46 this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
47 uint16_t syscon = this->read_(0x00, 2); // Default 0x0A04
48 if ((0x0A04 == syscon) && this->chip_init_()) {
49 this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE);
50 ESP_LOGD(TAG, "CSE7761 found");
51 this->data_.ready = true;
52 } else {
53 this->mark_failed();
54 }
55}
56
58 ESP_LOGCONFIG(TAG, "CSE7761:");
59 if (this->is_failed()) {
60 ESP_LOGE(TAG, "Communication with CSE7761 failed!");
61 }
62 LOG_UPDATE_INTERVAL(this);
64}
65
67
69 if (this->data_.ready) {
70 this->get_data_();
71 }
72}
73
74void CSE7761Component::write_(uint8_t reg, uint16_t data) {
75 uint8_t buffer[5];
76
77 buffer[0] = 0xA5;
78 buffer[1] = reg;
79 uint32_t len = 2;
80 if (data) {
81 if (data < 0xFF) {
82 buffer[2] = data & 0xFF;
83 len = 3;
84 } else {
85 buffer[2] = (data >> 8) & 0xFF;
86 buffer[3] = data & 0xFF;
87 len = 4;
88 }
89 uint8_t crc = 0;
90 for (uint32_t i = 0; i < len; i++) {
91 crc += buffer[i];
92 }
93 buffer[len] = ~crc;
94 len++;
95 }
96
97 this->write_array(buffer, len);
98}
99
100bool CSE7761Component::read_once_(uint8_t reg, uint8_t size, uint32_t *value) {
101 while (this->available()) {
102 this->read();
103 }
104
105 this->write_(reg, 0);
106
107 uint8_t buffer[8] = {0};
108 uint32_t rcvd = 0;
109
110 for (uint32_t i = 0; i <= size; i++) {
111 int value = this->read();
112 if (value > -1 && rcvd < sizeof(buffer) - 1) {
113 buffer[rcvd++] = value;
114 }
115 }
116
117 if (!rcvd) {
118 ESP_LOGD(TAG, "Received 0 bytes for register %hhu", reg);
119 return false;
120 }
121
122 rcvd--;
123 uint32_t result = 0;
124 // CRC check
125 uint8_t crc = 0xA5 + reg;
126 for (uint32_t i = 0; i < rcvd; i++) {
127 result = (result << 8) | buffer[i];
128 crc += buffer[i];
129 }
130 crc = ~crc;
131 if (crc != buffer[rcvd]) {
132 return false;
133 }
134
135 *value = result;
136 return true;
137}
138
139uint32_t CSE7761Component::read_(uint8_t reg, uint8_t size) {
140 bool result = false; // Start loop
141 uint8_t retry = 3; // Retry up to three times
142 uint32_t value = 0; // Default no value
143 while (!result && retry > 0) {
144 retry--;
145 if (this->read_once_(reg, size, &value))
146 return value;
147 }
148 ESP_LOGE(TAG, "Reading register %hhu failed!", reg);
149 return value;
150}
151
153 switch (unit) {
154 case RMS_UC:
155 return 0x400000 * 100 / this->data_.coefficient[RMS_UC];
156 case RMS_IAC:
157 return (0x800000 * 100 / this->data_.coefficient[RMS_IAC]) * 10; // Stay within 32 bits
158 case POWER_PAC:
159 return 0x80000000 / this->data_.coefficient[POWER_PAC];
160 }
161 return 0;
162}
163
165 uint16_t calc_chksum = 0xFFFF;
166 for (uint32_t i = 0; i < 8; i++) {
167 this->data_.coefficient[i] = this->read_(CSE7761_REG_RMSIAC + i, 2);
168 calc_chksum += this->data_.coefficient[i];
169 }
170 calc_chksum = ~calc_chksum;
171 uint16_t coeff_chksum = this->read_(CSE7761_REG_COEFFCHKSUM, 2);
172 if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
173 ESP_LOGD(TAG, "Default calibration");
174 this->data_.coefficient[RMS_IAC] = CSE7761_IREF;
175 this->data_.coefficient[RMS_UC] = CSE7761_UREF;
176 this->data_.coefficient[POWER_PAC] = CSE7761_PREF;
177 }
178
179 this->write_(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
180
181 uint8_t sys_status = this->read_(CSE7761_REG_SYSSTATUS, 1);
182 if (sys_status & 0x10) { // Write enable to protected registers (WREN)
183 this->write_(CSE7761_REG_SYSCON | 0x80, 0xFF04);
184 this->write_(CSE7761_REG_EMUCON | 0x80, 0x1183);
185 this->write_(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1);
186 this->write_(CSE7761_REG_PULSE1SEL | 0x80, 0x3290);
187 } else {
188 ESP_LOGD(TAG, "Write failed at chip_init");
189 return false;
190 }
191 return true;
192}
193
195 // The effective value of current and voltage Rms is a 24-bit signed number,
196 // the highest bit is 0 for valid data,
197 // and when the highest bit is 1, the reading will be processed as zero
198 // The active power parameter PowerA/B is in two’s complement format, 32-bit
199 // data, the highest bit is Sign bit.
200 uint32_t value = this->read_(CSE7761_REG_RMSU, 3);
201 this->data_.voltage_rms = (value >= 0x800000) ? 0 : value;
202
203 value = this->read_(CSE7761_REG_RMSIA, 3);
204 this->data_.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
205 value = this->read_(CSE7761_REG_POWERPA, 4);
206 this->data_.active_power[0] = (0 == this->data_.current_rms[0]) ? 0 : ((uint32_t) abs((int) value));
207
208 value = this->read_(CSE7761_REG_RMSIB, 3);
209 this->data_.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
210 value = this->read_(CSE7761_REG_POWERPB, 4);
211 this->data_.active_power[1] = (0 == this->data_.current_rms[1]) ? 0 : ((uint32_t) abs((int) value));
212
213 // convert values and publish to sensors
214
215 float voltage = (float) this->data_.voltage_rms / this->coefficient_by_unit_(RMS_UC);
216 if (this->voltage_sensor_ != nullptr) {
217 this->voltage_sensor_->publish_state(voltage);
218 }
219
220 for (uint8_t channel = 0; channel < 2; channel++) {
221 // Active power = PowerPA * PowerPAC * 1000 / 0x80000000
222 float active_power = (float) this->data_.active_power[channel] / this->coefficient_by_unit_(POWER_PAC); // W
223 float amps = (float) this->data_.current_rms[channel] / this->coefficient_by_unit_(RMS_IAC); // A
224 ESP_LOGD(TAG, "Channel %d power %f W, current %f A", channel + 1, active_power, amps);
225 if (channel == 0) {
226 if (this->power_sensor_1_ != nullptr) {
227 this->power_sensor_1_->publish_state(active_power);
228 }
229 if (this->current_sensor_1_ != nullptr) {
230 this->current_sensor_1_->publish_state(amps);
231 }
232 } else if (channel == 1) {
233 if (this->power_sensor_2_ != nullptr) {
234 this->power_sensor_2_->publish_state(active_power);
235 }
236 if (this->current_sensor_2_ != nullptr) {
237 this->current_sensor_2_->publish_state(amps);
238 }
239 }
240 }
241}
242
243} // namespace cse7761
244} // namespace esphome
virtual void mark_failed()
Mark this component as failed.
bool is_failed() const
sensor::Sensor * current_sensor_1_
Definition cse7761.h:38
sensor::Sensor * power_sensor_2_
Definition cse7761.h:39
sensor::Sensor * voltage_sensor_
Definition cse7761.h:36
uint32_t coefficient_by_unit_(uint32_t unit)
Definition cse7761.cpp:152
uint32_t read_(uint8_t reg, uint8_t size)
Definition cse7761.cpp:139
sensor::Sensor * current_sensor_2_
Definition cse7761.h:40
sensor::Sensor * power_sensor_1_
Definition cse7761.h:37
bool read_once_(uint8_t reg, uint8_t size, uint32_t *value)
Definition cse7761.cpp:100
float get_setup_priority() const override
Definition cse7761.cpp:66
void write_(uint8_t reg, uint16_t data)
Definition cse7761.cpp:74
void publish_state(float state)
Publish a new state to the front-end.
Definition sensor.cpp:39
void check_uart_settings(uint32_t baud_rate, uint8_t stop_bits=1, UARTParityOptions parity=UART_CONFIG_PARITY_NONE, uint8_t data_bits=8)
Check that the configuration of the UART bus matches the provided values and otherwise print a warnin...
Definition uart.cpp:13
void write_array(const uint8_t *data, size_t len)
Definition uart.h:21
const float DATA
For components that import data from directly connected sensors like DHT.
Definition component.cpp:19
Providing packet encoding functions for exchanging data with a remote host.
Definition a01nyub.cpp:7
std::string size_t len
Definition helpers.h:301