ESPHome 2026.2.1
Loading...
Searching...
No Matches
light_color_values.h
Go to the documentation of this file.
1#pragma once
2
4#include "color_mode.h"
5#include <cmath>
6
7namespace esphome::light {
8
9inline static uint8_t to_uint8_scale(float x) { return static_cast<uint8_t>(roundf(x * 255.0f)); }
10
45 public:
48 : state_(0.0f),
49 brightness_(1.0f),
51 red_(1.0f),
52 green_(1.0f),
53 blue_(1.0f),
54 white_(1.0f),
56 cold_white_{1.0f},
57 warm_white_{1.0f},
59
60 LightColorValues(ColorMode color_mode, float state, float brightness, float color_brightness, float red, float green,
61 float blue, float white, float color_temperature, float cold_white, float warm_white) {
62 this->set_color_mode(color_mode);
63 this->set_state(state);
64 this->set_brightness(brightness);
65 this->set_color_brightness(color_brightness);
66 this->set_red(red);
67 this->set_green(green);
68 this->set_blue(blue);
69 this->set_white(white);
70 this->set_color_temperature(color_temperature);
71 this->set_cold_white(cold_white);
72 this->set_warm_white(warm_white);
73 }
74
85 static LightColorValues lerp(const LightColorValues &start, const LightColorValues &end, float completion);
86
98 float max_value = fmaxf(this->red_, fmaxf(this->green_, this->blue_));
99 // Assign directly to avoid redundant clamp in set_red/green/blue.
100 // Values are guaranteed in [0,1]: inputs are already clamped to [0,1],
101 // and dividing by max_value (the largest) keeps results in [0,1].
102 if (max_value == 0.0f) {
103 this->red_ = 1.0f;
104 this->green_ = 1.0f;
105 this->blue_ = 1.0f;
106 } else {
107 this->red_ /= max_value;
108 this->green_ /= max_value;
109 this->blue_ /= max_value;
110 }
111 }
112 }
113
114 // Note that method signature of as_* methods is kept as-is for compatibility reasons, so not all parameters
115 // are always used or necessary. Methods will be deprecated later.
116
118 void as_binary(bool *binary) const { *binary = this->state_ == 1.0f; }
119
121 void as_brightness(float *brightness, float gamma = 0) const {
122 *brightness = gamma_correct(this->state_ * this->brightness_, gamma);
123 }
124
126 void as_rgb(float *red, float *green, float *blue, float gamma = 0, bool color_interlock = false) const {
127 if (this->color_mode_ & ColorCapability::RGB) {
128 float brightness = this->state_ * this->brightness_ * this->color_brightness_;
129 *red = gamma_correct(brightness * this->red_, gamma);
130 *green = gamma_correct(brightness * this->green_, gamma);
131 *blue = gamma_correct(brightness * this->blue_, gamma);
132 } else {
133 *red = *green = *blue = 0;
134 }
135 }
136
138 void as_rgbw(float *red, float *green, float *blue, float *white, float gamma = 0,
139 bool color_interlock = false) const {
140 this->as_rgb(red, green, blue, gamma);
142 *white = gamma_correct(this->state_ * this->brightness_ * this->white_, gamma);
143 } else {
144 *white = 0;
145 }
146 }
147
149 void as_rgbww(float *red, float *green, float *blue, float *cold_white, float *warm_white, float gamma = 0,
150 bool constant_brightness = false) const {
151 this->as_rgb(red, green, blue, gamma);
152 this->as_cwww(cold_white, warm_white, gamma, constant_brightness);
153 }
154
156 void as_rgbct(float color_temperature_cw, float color_temperature_ww, float *red, float *green, float *blue,
157 float *color_temperature, float *white_brightness, float gamma = 0) const {
158 this->as_rgb(red, green, blue, gamma);
159 this->as_ct(color_temperature_cw, color_temperature_ww, color_temperature, white_brightness, gamma);
160 }
161
163 void as_cwww(float *cold_white, float *warm_white, float gamma = 0, bool constant_brightness = false) const {
165 const float cw_level = gamma_correct(this->cold_white_, gamma);
166 const float ww_level = gamma_correct(this->warm_white_, gamma);
167 const float white_level = gamma_correct(this->state_ * this->brightness_, gamma);
168 if (!constant_brightness) {
169 *cold_white = white_level * cw_level;
170 *warm_white = white_level * ww_level;
171 } else {
172 // Just multiplying by cw_level / (cw_level + ww_level) would divide out the brightness information from the
173 // cold_white and warm_white settings (i.e. cw=0.8, ww=0.4 would be identical to cw=0.4, ww=0.2), which breaks
174 // transitions. Use the highest value as the brightness for the white channels (the alternative, using cw+ww/2,
175 // reduces to cw/2 and ww/2, which would still limit brightness to 100% of a single channel, but isn't very
176 // useful in all other aspects -- that behaviour can also be achieved by limiting the output power).
177 const float sum = cw_level > 0 || ww_level > 0 ? cw_level + ww_level : 1; // Don't divide by zero.
178 *cold_white = white_level * std::max(cw_level, ww_level) * cw_level / sum;
179 *warm_white = white_level * std::max(cw_level, ww_level) * ww_level / sum;
180 }
181 } else {
182 *cold_white = *warm_white = 0;
183 }
184 }
185
187 void as_ct(float color_temperature_cw, float color_temperature_ww, float *color_temperature, float *white_brightness,
188 float gamma = 0) const {
189 const float white_level = this->color_mode_ & ColorCapability::RGB ? this->white_ : 1;
191 *color_temperature =
192 (this->color_temperature_ - color_temperature_cw) / (color_temperature_ww - color_temperature_cw);
193 *white_brightness = gamma_correct(this->state_ * this->brightness_ * white_level, gamma);
194 } else { // Probably won't get here but put this here anyway.
195 *white_brightness = 0;
196 }
197 }
198
200 bool operator==(const LightColorValues &rhs) const {
201 return color_mode_ == rhs.color_mode_ && state_ == rhs.state_ && brightness_ == rhs.brightness_ &&
202 color_brightness_ == rhs.color_brightness_ && red_ == rhs.red_ && green_ == rhs.green_ &&
203 blue_ == rhs.blue_ && white_ == rhs.white_ && color_temperature_ == rhs.color_temperature_ &&
205 }
206 bool operator!=(const LightColorValues &rhs) const { return !(rhs == *this); }
207
209 ColorMode get_color_mode() const { return this->color_mode_; }
211 void set_color_mode(ColorMode color_mode) { this->color_mode_ = color_mode; }
212
214 float get_state() const { return this->state_; }
216 bool is_on() const { return this->get_state() != 0.0f; }
218 void set_state(float state) { this->state_ = clamp(state, 0.0f, 1.0f); }
220 void set_state(bool state) { this->state_ = state ? 1.0f : 0.0f; }
221
223 float get_brightness() const { return this->brightness_; }
225 void set_brightness(float brightness) { this->brightness_ = clamp(brightness, 0.0f, 1.0f); }
226
228 float get_color_brightness() const { return this->color_brightness_; }
230 void set_color_brightness(float brightness) { this->color_brightness_ = clamp(brightness, 0.0f, 1.0f); }
231
233 float get_red() const { return this->red_; }
235 void set_red(float red) { this->red_ = clamp(red, 0.0f, 1.0f); }
236
238 float get_green() const { return this->green_; }
240 void set_green(float green) { this->green_ = clamp(green, 0.0f, 1.0f); }
241
243 float get_blue() const { return this->blue_; }
245 void set_blue(float blue) { this->blue_ = clamp(blue, 0.0f, 1.0f); }
246
248 float get_white() const { return white_; }
250 void set_white(float white) { this->white_ = clamp(white, 0.0f, 1.0f); }
251
253 float get_color_temperature() const { return this->color_temperature_; }
255 void set_color_temperature(float color_temperature) { this->color_temperature_ = color_temperature; }
256
259 if (this->color_temperature_ <= 0) {
260 return this->color_temperature_;
261 }
262 return 1000000.0 / this->color_temperature_;
263 }
265 void set_color_temperature_kelvin(float color_temperature) {
266 if (color_temperature <= 0) {
267 return;
268 }
269 this->color_temperature_ = 1000000.0 / color_temperature;
270 }
271
273 float get_cold_white() const { return this->cold_white_; }
275 void set_cold_white(float cold_white) { this->cold_white_ = clamp(cold_white, 0.0f, 1.0f); }
276
278 float get_warm_white() const { return this->warm_white_; }
280 void set_warm_white(float warm_white) { this->warm_white_ = clamp(warm_white, 0.0f, 1.0f); }
281
282 friend class LightCall;
283
284 protected:
285 float state_;
288 float red_;
289 float green_;
290 float blue_;
291 float white_;
296};
297
298} // namespace esphome::light
This class represents a requested change in a light state.
Definition light_call.h:21
This class represents the color state for a light object.
float get_state() const
Get the state of these light color values. In range from 0.0 (off) to 1.0 (on)
void set_color_mode(ColorMode color_mode)
Set the color mode of these light color values.
float get_brightness() const
Get the brightness property of these light color values. In range 0.0 to 1.0.
void as_ct(float color_temperature_cw, float color_temperature_ww, float *color_temperature, float *white_brightness, float gamma=0) const
Convert these light color values to a CT+BR representation with the given parameters.
float get_blue() const
Get the blue property of these light color values. In range 0.0 to 1.0.
float get_white() const
Get the white property of these light color values. In range 0.0 to 1.0.
float state_
ON / OFF, float for transition.
float get_color_temperature() const
Get the color temperature property of these light color values in mired.
void as_rgb(float *red, float *green, float *blue, float gamma=0, bool color_interlock=false) const
Convert these light color values to an RGB representation and write them to red, green,...
bool operator!=(const LightColorValues &rhs) const
void set_state(bool state)
Set the state of these light color values as a binary true/false.
void set_brightness(float brightness)
Set the brightness property of these light color values. In range 0.0 to 1.0.
float get_cold_white() const
Get the cold white property of these light color values. In range 0.0 to 1.0.
void set_blue(float blue)
Set the blue property of these light color values. In range 0.0 to 1.0.
void set_cold_white(float cold_white)
Set the cold white property of these light color values. In range 0.0 to 1.0.
void set_color_brightness(float brightness)
Set the color brightness property of these light color values. In range 0.0 to 1.0.
void set_color_temperature_kelvin(float color_temperature)
Set the color temperature property of these light color values in kelvin.
bool operator==(const LightColorValues &rhs) const
Compare this LightColorValues to rhs, return true if and only if all attributes match.
void set_warm_white(float warm_white)
Set the warm white property of these light color values. In range 0.0 to 1.0.
void as_cwww(float *cold_white, float *warm_white, float gamma=0, bool constant_brightness=false) const
Convert these light color values to an CWWW representation with the given parameters.
bool is_on() const
Get the binary true/false state of these light color values.
float get_green() const
Get the green property of these light color values. In range 0.0 to 1.0.
void set_state(float state)
Set the state of these light color values. In range from 0.0 (off) to 1.0 (on)
void set_color_temperature(float color_temperature)
Set the color temperature property of these light color values in mired.
float get_warm_white() const
Get the warm white property of these light color values. In range 0.0 to 1.0.
LightColorValues()
Construct the LightColorValues with all attributes enabled, but state set to off.
static LightColorValues lerp(const LightColorValues &start, const LightColorValues &end, float completion)
Linearly interpolate between the values in start to the values in end.
void as_binary(bool *binary) const
Convert these light color values to a binary representation and write them to binary.
float color_temperature_
Color Temperature in Mired.
LightColorValues(ColorMode color_mode, float state, float brightness, float color_brightness, float red, float green, float blue, float white, float color_temperature, float cold_white, float warm_white)
void as_rgbw(float *red, float *green, float *blue, float *white, float gamma=0, bool color_interlock=false) const
Convert these light color values to an RGBW representation and write them to red, green,...
ColorMode get_color_mode() const
Get the color mode of these light color values.
void set_white(float white)
Set the white property of these light color values. In range 0.0 to 1.0.
float get_red() const
Get the red property of these light color values. In range 0.0 to 1.0.
void set_green(float green)
Set the green property of these light color values. In range 0.0 to 1.0.
void set_red(float red)
Set the red property of these light color values. In range 0.0 to 1.0.
void normalize_color()
Normalize the color (RGB/W) component.
float get_color_brightness() const
Get the color brightness property of these light color values. In range 0.0 to 1.0.
void as_brightness(float *brightness, float gamma=0) const
Convert these light color values to a brightness-only representation and write them to brightness.
void as_rgbct(float color_temperature_cw, float color_temperature_ww, float *red, float *green, float *blue, float *color_temperature, float *white_brightness, float gamma=0) const
Convert these light color values to an RGB+CT+BR representation with the given parameters.
float get_color_temperature_kelvin() const
Get the color temperature property of these light color values in kelvin.
void as_rgbww(float *red, float *green, float *blue, float *cold_white, float *warm_white, float gamma=0, bool constant_brightness=false) const
Convert these light color values to an RGBWW representation with the given parameters.
bool state
Definition fan.h:2
ColorMode
Color modes are a combination of color capabilities that can be used at the same time.
Definition color_mode.h:49
@ UNKNOWN
No color mode configured (cannot be a supported mode, only active when light is off).
@ RGB
Color can be controlled using RGB format (includes a brightness control for the color).
@ COLOR_TEMPERATURE
Color temperature can be controlled.
@ WHITE
Brightness of white channel can be controlled separately from other channels.
@ COLD_WARM_WHITE
Brightness of cold and warm white output can be controlled.
float gamma_correct(float value, float gamma)
Applies gamma correction of gamma to value.
Definition helpers.cpp:704
uint8_t end[39]
Definition sun_gtil2.cpp:17
uint16_t x
Definition tt21100.cpp:5